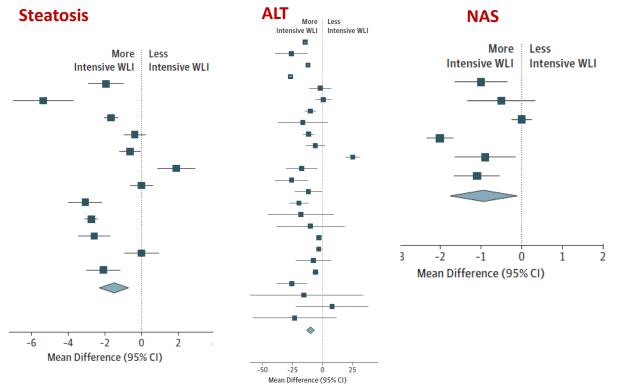
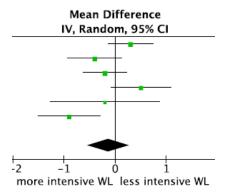

How to implement a Healthy Lifestyle in NAFLD/NASH Patients

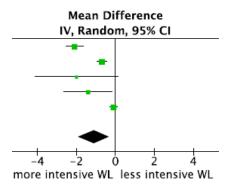
Shira Zelber-Sagi R.D. Ph.D Dept. of Gastroenterology Tel Aviv Medical Center School of Public Health, Haifa University Israel

Advances in Gastroenterology & Hepatology Conference


Summary of lifestyle treatment options through the course of NAFLD


Romero-Gómez M., Zelber-Sagi S., Trenell M., Journal of Hepatology 2017

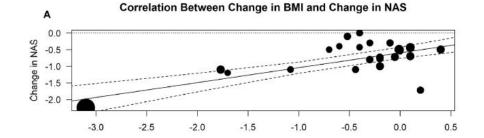
Effect of weight loss on NAFLD A Systematic Review and Meta-analysis


• 22 RCTs with 2588 participants with NAFLD

Fibrosis

Liver stiffness

Koutoukidis DA., JAMA Intern Med 2019

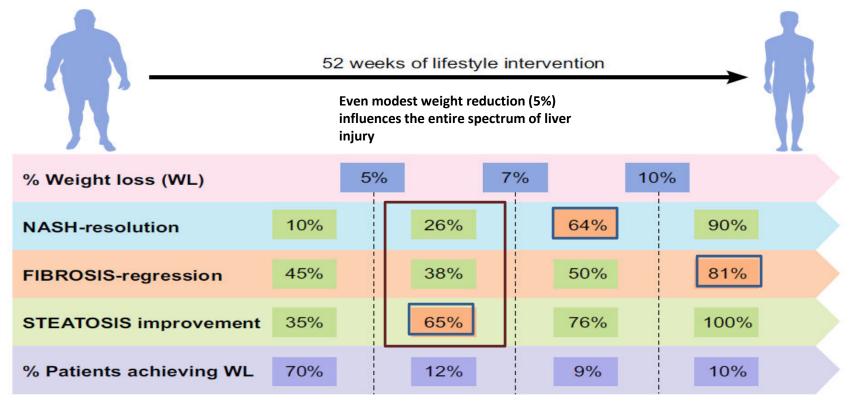

Placebo response in RCTs of pharmacotherapies for NASH

Study	Events	Total p	roportion with 2-point improvemer	nt in NAS	95%-CI
Alam, 2016	2	10		0.20 [0	.03; 0.56]
Alam, 2017	3	10		0.30 [0	.07; 0.65]
Argo, 2015	3	17		0.18 [0	.04; 0.43]
Armstrong, 2016	2	22		0.09 [0	.01; 0.29]
Belfort, 2006	3	21		0.14 [0	.03; 0.36]
Cusi, 2016	9	42		0.21 [0	.10; 0.37]
Dasarathy, 2015	9	19		0.47 [0	.24; 0.71]
Friedman, 2017	27	123		0.22 [0	.15; 0.30]
Heeboll, 2015	3	11		0.27 [0	.06; 0.61]
Joy, 2017	1	5		0.20 [0	.01; 0.72]
Le, 2012	2	14		0.14 [0	.02; 0.43]
Loguercio, 2012	0	69	⊢	0.00 [0	.00; 0.05]
Loomba, 2015	5	18		0.28 [0	.10; 0.53]
McPherson, 2017	6	17		0.35 [0	.14; 0.62]
Neuschwander-Tetri, 2015		98			.15; 0.33]
Ratziu, 2016	21	77			.18; 0.39]
Sanyal, 2010	16	72	— <u> </u>	0.22 [0	.13; 0.34]
Sanyal, 2014	18	55			.21; 0.47]
Takeshita, 2014	1	12			.00; 0.38]
Van Wagner, 2011	1	7			.00; 0.58]
Vilar Gomez, 2009	10	20			.27; 0.73]
Wah Kheong, 2017	13	45			.16; 0.44]
Wong, 2013 (JGH)	4	20			.06; 0.44]
Zein, 2011	4	26		0.15 [0	.04; 0.35]
Random effects model Heterogeneity: $l^2 = 27\%$, $\tau^2 =$	0.0693.1	830		0.25 [0.	21; 0.29]
			0 0.1 0.2 0.3 0.4 0.5 0.6 0.7		

OFO/ C

Church

25% of patients given placebo improved NAS by ≥2 points

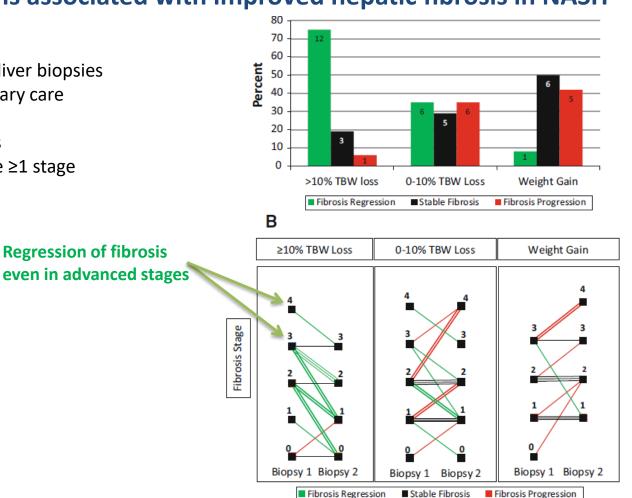


Study	Events	Total	Proportion with Improvement in Fibrosis 95%-CI
Abdelmalek, 2009	0	18	■ 0.00 [0.00; 0.19]
Alam, 2016	0	10	■ 0.00 [0.00; 0.31]
Alam, 2017	2	10	0.20 [0.03; 0.56]
Argo, 2015	3	17	0.18 [0.04; 0.43]
Armstrong, 2016	3	22	0.14 [0.03; 0.35]
Belfort, 2006	7	20	0.35 [0.15; 0.59]
Cusi, 2016	13	42	0.31 [0.18; 0.47]
Dasarathy, 2015	6	19	0.32 [0.13; 0.57]
Friedman, 2017	23	123	0.19 [0.12; 0.27]
Haukeland, 2009	4	24	0.17 [0.05; 0.37]
Heebøll, 2016	1	11	0.09 [0.00; 0.41]
Joy, 2017	2	5	0.40 [0.05; 0.85]
Loguercio, 2012	0	69	► 0.00 [0.00; 0.05]
McPherson, 2017	4	17	0.24 [0.07; 0.50]
Neuschwander-Tetri, 2015		98	0.19 [0.12; 0.29]
Ratziu, 2008	5	31	0.16 [0.05; 0.34]
Sanyal, 2010	26	72	0.36 [0.25; 0.48]
Takeshita, 2014	1	12	0.08 [0.00; 0.38]
Van Wagner, 2011	0	7	■ 0.00 [0.00; 0.41]
Vilar Gomez, 2009	10	20	• 0.50 [0.27; 0.73]
Wah Kheong, 2017	3	45	0.07 [0.01; 0.18]
Wong, 2013 JGH	5	20	0.25 [0.09; 0.49]
Zein, 2011	4	26	0.15 [0.04; 0.35]
Random effects model		738	0.21 [0.16; 0.26]
Heterogeneity: $I^2 = 51\%$, $\tau^2 =$	0.2395		
			0 0.2 0.4 0.6 0.8

21% of patients given placebo improved fibrosis by ≥1 point

Han MAT., Clin Gastroenterol Hepatol 2019

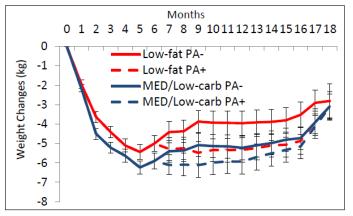
Probability of reaching NASH resolution, fibrosis regression (at least one stage) and steatosis improvement in patients with NASH under lifestyle intervention

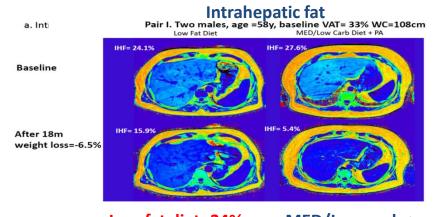

Vilar-Gomez E., Gastroenterology 2015

Romero-Gómez M., Zelber-Sagi S., Trenell M., Journal of Hepatology 2017

Weight Loss of 10 % is associated with improved hepatic fibrosis in NASH

Regression of fibrosis

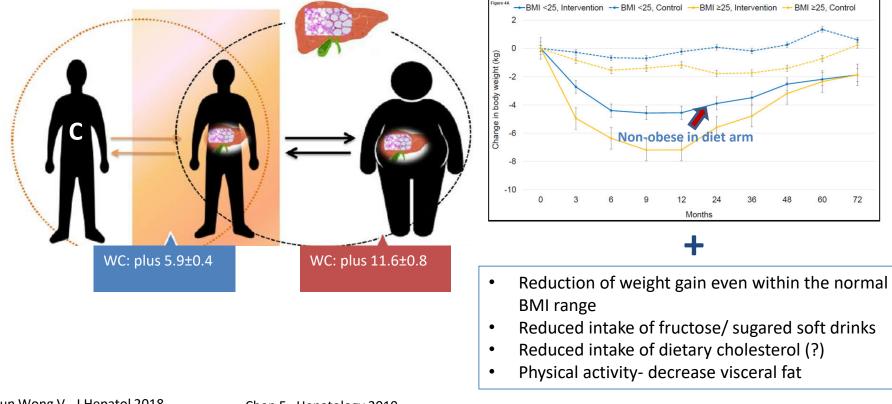

- 45 NASH patients with serial liver biopsies for clinical monitoring in tertiary care setting
- Fibrosis regression defined as improvement in fibrosis score ≥ 1 stage
- Mean follow-up 4.6 years



Glass LM., Dig Dis Sci 2014

Effect of diet with or without physical activity on liver and visceral fat

• 18-month RCT, 278 obese adults


Low fat diet -34%

MED/Low-carb + PA 80%

18-Month Changes	Low-Fat Diet		Mediterranean/Low- Carbohydrate Diet		
	PA- (Ref) PA+		PA-	PA+	
Visceral adipose tissue, cm ²	-32.9±33.5	-48.9±43.0†	-31.1±32.7	-47.3±36.6*	
Intrahepatic fat, %, absolute units	-3.72±7.12	-3.88±6.32	-3.67±6.51	-4.74±7.63	

Gepner Y., Circulation 2017

Beneficial effects of lifestyle intervention in non-obese patients with NAFLD

Change in body weight

Wai-Sun Wong V., J Hepatol 2018

Chen F., Hepatology 2019

Sookoian S., Aliment Pharmacol Ther 2017

7 Younes R., & Bugianesi E., Semin Liver Dis 2019

Ultra processed food and drinks Major source of added sugar, high energy dense foods & low nutritional value

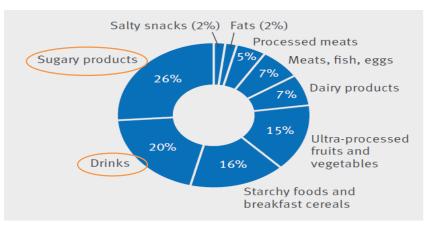
- Ultra-processed food (UPF) consumption has increased drastically worldwide
 - 50%–60% of total daily energy intake in several high-income countries

Monteiro CA., World Nutrition 2016

Ultra-processed foods are not 'real food'

- Formulations of food substances modified by chemical processes
- <u>'Cosmetic additives'</u> Flavours, colours, emulsifiers
- Hyper-palatable food and drink products

Practical way to identify if a product is ultra-processed


- List of ingredients contains substances rarely used in kitchens
 - Hydrolysed proteins
 - Fructose, high-fructose corn syrup
 - Hydrogenated oil
 - Cosmetic additives

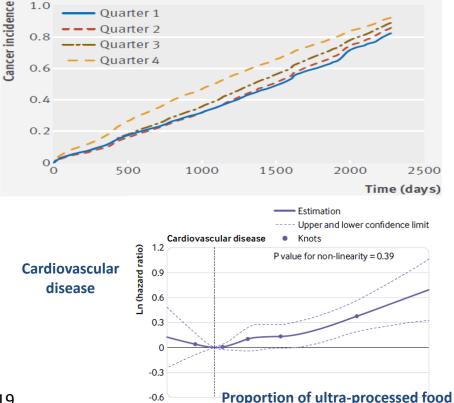
Monteiro CA., Public Health Nutrition 2018

Consumption of ultra-processed foods increases morbidity and mortality

1.0

104,980 adult participants from the French NutriNet-Santé cohort ٠

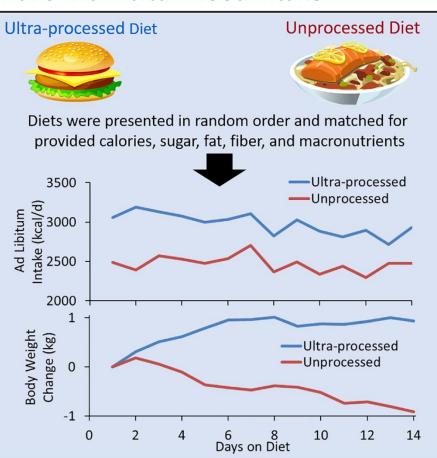
10% increase in the proportion of ultraprocessed food consumption


14% higher risk of all-cause mortality

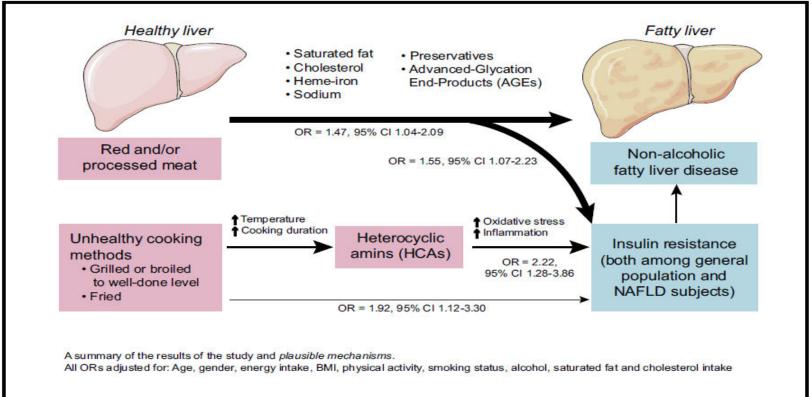
Srour B., BMJ 2019

Fiolet T., BMJ 2018

Schnabel L., JAMA Internal Medicine 2019


Cancer incidence by quarters of ultra-processed food

Ultra-Processed diets cause excess calorie intake and weight gain Randomized cross-over trial of Ad Libitum food intake


- 20 adults
- NIH Clinical Center
- Weight changes highly correlated with energy intake (r = 0.8, p < 0.0001)
- Limiting consumption of ultra-processed foods may be an effective strategy for obesity prevention and treatment

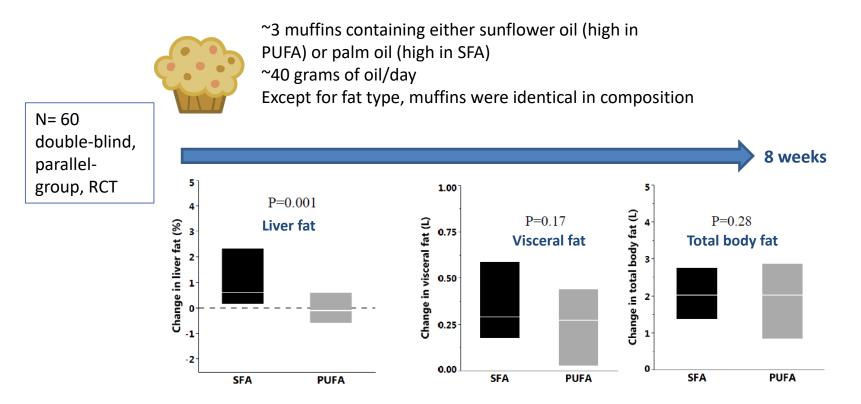
Hall KD., Cell Metabolism 2019

High red and processed meat consumption is associated with NAFLD and insulin resistance

• A cross sectional study of volunteers who participated in screening n=789, 39% NAFLD (US)

Zelber-Sagi S., Journal of Hepatology 2018

Diet associations with NAFLD in an ethnically diverse population the Multiethnic Cohort


- Nested case-control
- 2,974 NAFLD cases
 - 518 with cirrhosis
 - 2,456 without cirrhosis
- 29,474 matched controls
- Cases identified using Medicare claims ICD9/10
- Controls individually matched to cases on birth year, sex, ethnicity
- FFQ

(g/1,000 kcal/day)	NAFLD No Cirrhosis	NAFLD With Cirrhosis
Q 1 st vs. 4 th	OR	OR
	(95% CI)	(95% CI)
Cholesterol		
≤ 75.4	1.00 (ref.)	1.00 (ref.)
> 121.4	1.09 (0.96-1.23)	<mark>1.52 (1.15-2.01)</mark>
P-value for trend	0.0889	<mark>0.0018</mark>
Fiber		
≤ 8.5	1.00 (ref.)	1.00 (ref.)
> 14.0	<mark>0.86 (0.75-0.98)</mark>	0.75 (0.55-1.02)
P-value for trend	<mark>0.0123</mark>	0.1018

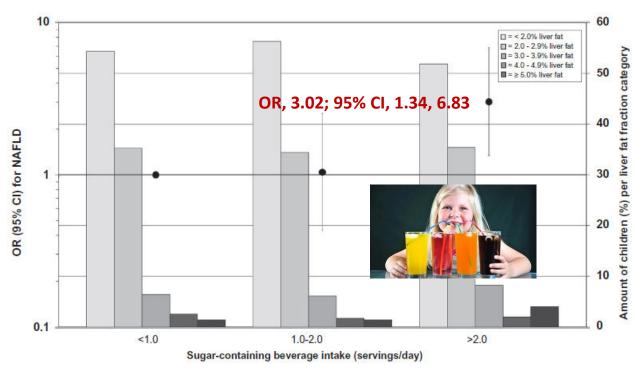
(g/1,000 kcal/day)	NAFLD No Cirrhosis	NAFLD With Cirrhosis
Q 1 ST vs. 4 th	OR	OR
	(95% CI)	(95% CI)
Total red meat		
≤ 13.7	1.00 (ref.)	1.00 (ref.)
> 34.0	1.10 (0.97-1.25)	<mark>1.43 (1.08-1.90)</mark>
P-value for trend	0.1190	<mark>0.0121</mark>
Red unprocessed meat		
≤ 9.3	1.00 (ref.)	1.00 (ref.)
> 24.1	1.10 (0.97-1.25)	<mark>1.52 (1.15-2.01)</mark>
P-value for trend	0.1223	<mark>0.0033</mark>
Processed red meat		
≤ 3.0	1.00 (ref.)	1.00 (ref.)
> 10.0	1.17 (1.03-1.32)	1.31 (0.99-1.71)
P-value for trend	0.0097	0.1123
Total poultry		
≤ 11.4 🦷	2 1.00 (ref.)	1.00 (ref.)
> 27.6	1.19 (1.05-1.35)	1.03 (0.79-1.35)
P-value for trend	0.0028	0.7717

Noureddin M., Hepatology 2019

Overeating saturated fat promotes fatty liver compared to polyunsaturated fat RCT

Rosqvist F., The Journal of Clinical Endocrinology & Metabolism 2019

A prospective study of dairy product intake and the risk of hepatocellular carcinoma in U.S. men and women

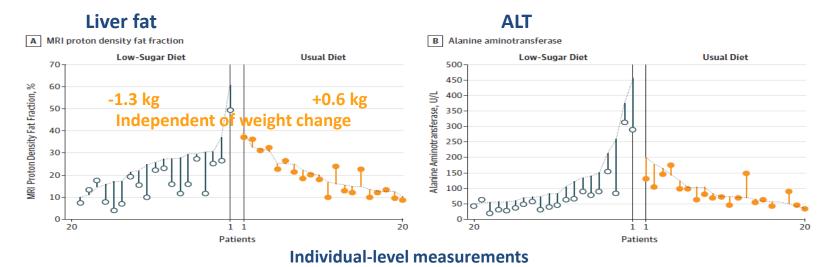

- 2 large prospective U.S. cohort studies, 51,418 men and 93,427 women
- Diets at baseline and updated every 2-4 years using validated FFQ

	Dairy products, HR (95% Cl)					
Tertile 1Tertile 2Tertile 3						
High-fat dairy products	1 (Reference)	1.5 (0.95-2)	1.81 (1.2-3)	0.008		
Low-fat dairy products	1 (Reference)	1.2 (0.8-1.8)	1.18 (0.8-1.8)	0.53		
Butter	1 (Reference)	1.3 (0.8-2)	1.58 (1.1-2)	0.04		

Adjusted for age, gender, race, physical activity, BMI, smoking, alcohol, coffee intake, calorie intake, aspirin use and type 2 diabetes

Sugar-containing beverage intake in infancy increases the risk for NAFLD in school-aged children

- Population-based prospective cohort
- 1,940 infants
- Sugar-containing beverage intake at 1 year: fruit juices, fruit concentrates, soft drinks, and lemonade
- NAFLD assessed with MRI at 10 years of age



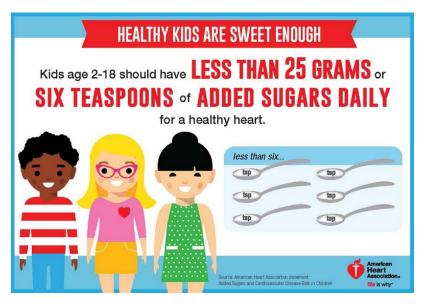
Adjusted for: children at 10 years of age, sex, total energy intake, maternal pre-pregnancy BMI, education, net household income, child ethnicity, physical activity, and screen time

Geurtsen ML., Hepatology, 2021

Effect of a low-free sugar diet in NAFLD

- An open-label, 8-week RCT
- Boys aged 11-16 years (n=40) with NAFLD
- Diet group or usual diet group
 - provision of study meals for the entire household to restrict free sugar intake to less than 3% of daily calories

Schwimmer JB., JAMA. 2019


Fructose consumption independently associated with NASH in children & adolescents

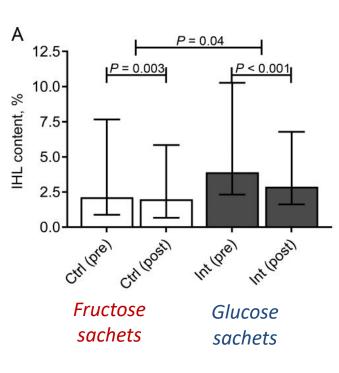
- 271 obese children with NAFLD
- Liver biopsy obtained

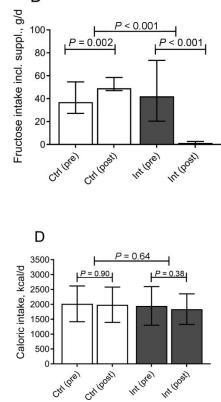
Adjusted association between fructose consumption & uric acid levels and NASH (NAS≥5)

	Odds ratio (95% CI)	р
Fructose, g/day	1.612 (1.25,1.86)	0.001
Uric acid, mg/dl	2.488 (1.87,2.83)	0.004
WC, cm	1.842 (1.11,1.95)	0.03
HOMA-IR	3.21 (1.9, 5.72)	0.024
Triglyceride, mg/dl	1.208 (1.1,1.58)	0.048

Mosca A., Nobili V., Journal of Hepatology 2017

"Excess consumption of added sugars, especially from sugary drinks, poses health threat to children and adolescents, disproportionately affecting children of minority and low-income communities. Public policies, are needed"


Policy statement 2019

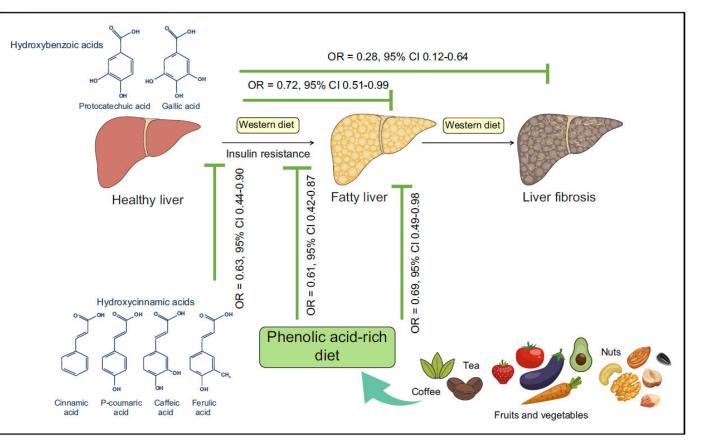

American Academy of Pediatrics

Effects of fructose restriction on liver steatosis a double-blind RCT

- Adult overweight with a fatty liver index ≥ 60
- All underwent 6-wk fructose-restricted diet (<7.5 g/meal and <10 g/d)
- Randomly assigned to supplementation with sachets of glucose or fructose

No association of fruits intake with NAFLD

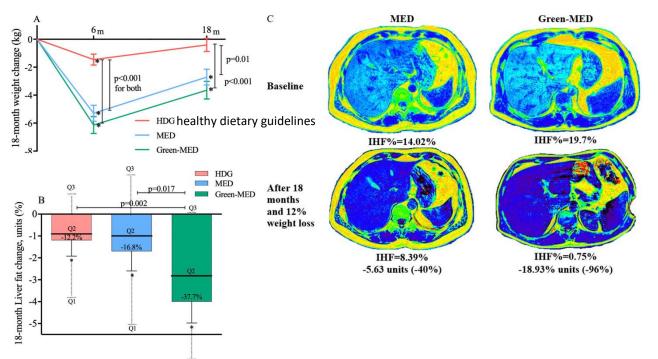
- Cross-sectional study in Japan
- Short dietary intake questionnaire
- NAFLD diagnosed by US


Odds ratios of non-alcoholic fatty liver disease according to quartiles of fruit intake and vegetable intake

	Q1	Q2	Q3	Q4	p-trend
Women (N=1,467)					
Fruit (g/1,000 kcal) median (range)	16.3 (0.0-30.5)	45.4 (30.8-59.9)	74.4 (60.0-93.1)	121.0 (93.2-329.5)	
BMI adjusted OR	1	0.85 (0.49, 1.47)	0.90 (0.49, 1.63)	0.82 (0.44, 1.55)	0.60
Men (N=977)					2
Fruit (g/1,000 kcal) median (range)	10.4 (0.0-18.1)	28.2 (18.2-39.3)	52.6 (39.4-67.9)	93.9 (68.3-301.6)	
BMI adjusted OR	1	0.90 (0.58, 1.38)	0.88 (0.56, 1.37)	0.68 (0.42, 1.11)	0.12

Tajima R., Nutrition 2018

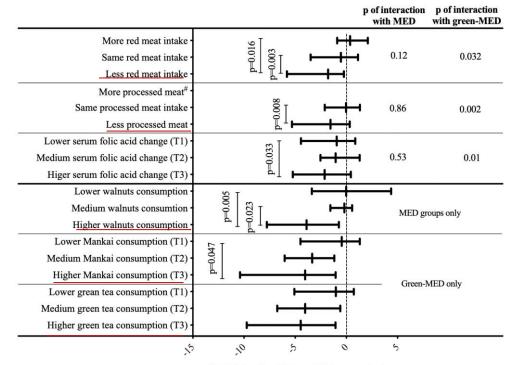
Higher phenolic acid intake independently associates with lower prevalence of insulin resistance and NAFLD


- Cross-sectional study, n= 789
- AUS
- FibroTest
- HOMA
- Phenolic acid content of food calculated by Phenol-Explorer

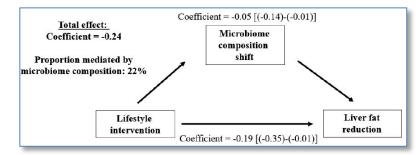
Salomone F., JHEP Reports 2020

Effect of green-Mediterranean diet on intrahepatic fat: RCT

- 18-month RCT
- 294 people with abdominal obesity or dyslipidemia
- Two isocaloric MED groups
- Green-Mediterranean diet, further restricted in red/processed meat, and enriched with green plants and polyphenols
 - green tea (3–4 cups/day)
 - Mankai (a Wolffia globosa aquatic plant strain) green shake

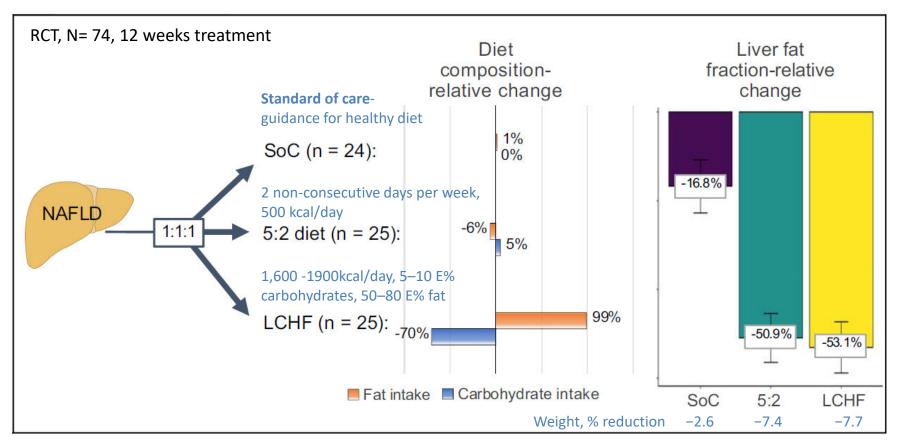


Total plasma polyphenol levels at the end of the intervention were higher in the green-MED participant versus MED participant (0.67 mg/L vs 0.24 mg/L)


Yaskolka Meir A., Gut 2021

Effect of green-Mediterranean diet on intrahepatic fat

Liver fat loss associated with increased Mankai, green tea and walnuts intake, decreased red/processed meat consumption


In a mediation analysis, the compositional shift of the microbiome accounted for 22% of IHF change by the lifestyle interventions

 Δ IHF% (median, 25th and 75th percentiles)

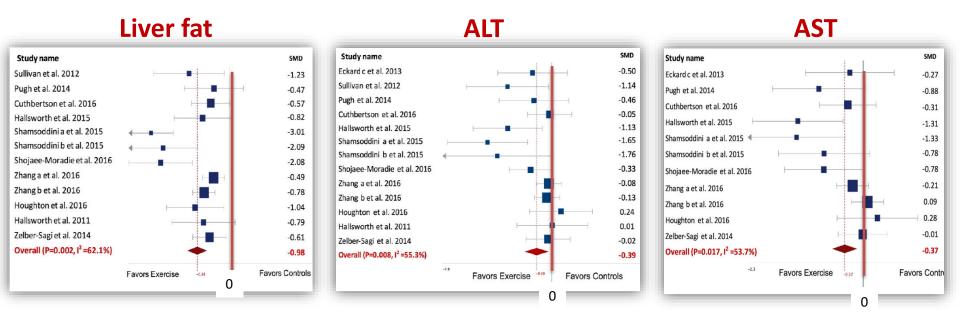
Yaskolka Meir A., Gut 2021

Treatment of NAFLD with intermittent calorie restriction or low-carb high-fat diet

Holmer M., JHEP Reports 2021

Modest (~<2 drinks/d) alcohol consumption compared to non-drinking

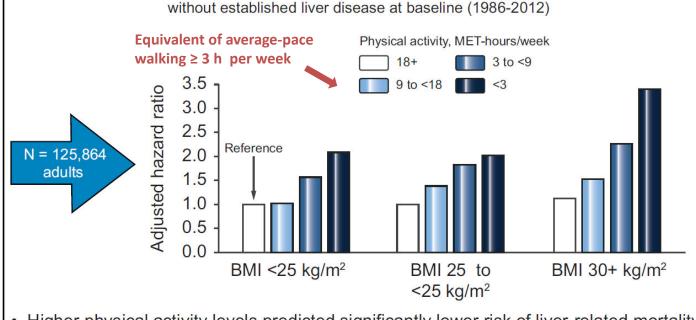
Author & Year	Design & Population	Steatosis	NASH	Fibrosis	Severe liver event	HCC/ CVD
Chang Y., Hepatology 2019	Cohort study 4-Y FU N=190,048 Korean employees	Reduced risk	-	Increased risk	-	-
Chang Y., Hepatology 2018	Cohort study 8.3-Y FU N=58,927 Korean employees	-	-	Increased risk	-	-
Yamada K., PLOS ONE 2018	Cross-sectional study N=178 NAFLD	-	Reduced risk	Reduced risk	-	-
Åberg F., Hepatology 2018	Follow-up data from national registers	-	-	-	Increased risk	-
Hagström H., Scand J Gastroenterol 2017	Cross-sectional N=120 NAFLD	-	No association	Reduced risk	-	-
Moriya A., J of Hepatology 2015	Prospective 2-Y FU N=5297 Japanese	Reduced risk	-	-	-	-
Dunn W., J of Hepatology 2012	Cross-sectional N= 582 NASH CRN	-	Reduced risk	Reduced risk	-	-
Ascha MS., Hepetology 2010	Prospective 3-Y FU N=195 NASH-Cirrhosis	-	-	-	-	Increased risk
VanWagner LB., Gastroenterology 2017	Cross-sectional N=570 NAFLD	-	-	-	-	Not protective from subclinical CVD (e.g. CAC)


Modest (~<2 drinks/d) alcohol consumption compared to non-drinking in NAFLD patients – only prospective studies

Author & Year	Design & Population	Fibrosis	Severe liver event	нсс
Åberg F., Hepatology 2020	Cohort study 11-y FU N=8,345	-	Increased risk	-
Chang Y., Hepatology 2019	Cohort study 4-Y FU N=190,048	Increased risk	-	-
Ajmera V., Clin Gastroenterol Hepatol. 2018	Cohort study 4-y FU N= 285	Lower odds of NASH resolution	-	-
Chang Y., Hepatology 2018	Cohort study 8.3-Y FU N=58,927	Increased risk	-	-
Ascha MS., Hepetology 2010	Prospective 3-Y FU N=195 NASH-Cirrhosis	-	-	Increased risk

Alcohol recommendations for NAFLD from international guidelines

Association	Journal Year of publication	Recommendation
European Association for the Study of the Liver (EASL) European Association for the Study of Diabetes (EASD) and European Association for the Study of Obesity (EASO)	J of Hepatology 2016	Total abstinence is mandatory in NASH-cirrhosis
American Association for the Study of Liver Diseases (AASLD)	Hepatology 2017	There are insufficient data to make recommendations to non-heavy consumption of alcohol
The European Society for Clinical Nutrition and Metabolism (ESPEN)	Clinical Nutrition 2019	NAFL/NASH patients shall be encouraged to abstain from alcohol in order reduce risk for comorbidity and to improve liver biochemistry and histology


Effect of exercise <u>alone</u> on liver fat and ALT Meta-analysis of RCTs

Katsagoni CN., Metabolism 2017

Physical activity is protective from liver related mortality and attenuates the added risk from adiposity

 Liver-related mortality, defined as death from HCC or from a non-HCC complication of cirrhosis

Liver-related mortality risk in U.S. men and women

- Higher physical activity levels predicted significantly lower risk of liver-related mortality, across all levels of body mass index (BMI)
- Average-pace walking for >3 hours per week could have prevented 25% of liver-related deaths

Simon TG., Journal of Hepatology 2020

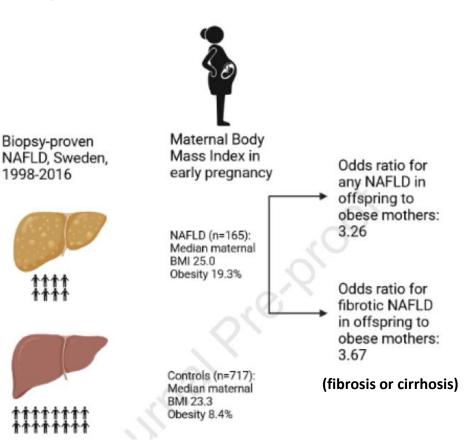
Physical Activity and Sedentary Behavior Are Independent Predictors of Nonalcoholic Fatty Liver Disease

		OR (95% CI)	Р
	Sitting time (hour/day)		
	Q1 (< 4)	1	For trend<0.001
Regardless of	Q2 (\geq 4 to < 6)	0.99(0.89-1.11)	0.891
total physical activity	Q3 (\geq 6 to < 8)	1.10(0.98-1.25)	0.106
detivity	Q4 (≥ 8)	1.21(1.11-1.31)	<0.001
	Total physical activity (minutes/week)		
	0	1	For trend<0.001
	1-149	0.79(0.71-0.87)	<0.001
	150-299	0.73(0.63-0.84)	<0.001
	≥300	0.62(0.56-0.68)	<0.001

Adjusted for age, sex, race/ethnicity, education level, marital status, economic status, smoking status, hypertension, and total cholesterol, total physical activity

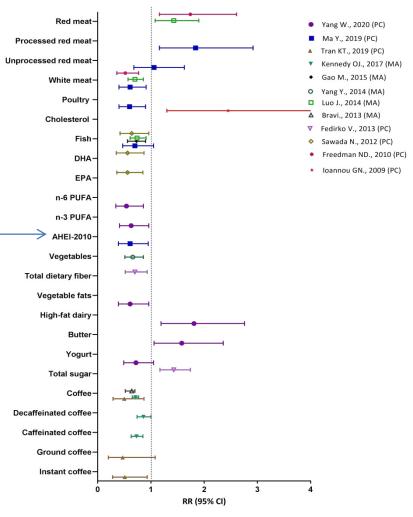
Impact of the Interaction Between PNPLA3 Genetic Variation and Dietary Intake on the Risk of Significant Fibrosis in Patients With NAFLD

Dietary factors CC OR (95% CI) P-value Carb (% of energy) 1.02 (0.97-2.53) 0.383 n-3 PUFAs (g/d)^c 0.24 (0.04-1.51) 0.128 Total isoflavones (mg/d) 1.58 (0.72-3.49) 0.255 0.49 (0.13-1.92) Methionine (mg/d)0.311 Total choline (mg/d) 0.48 (0.12-1.87) 0.295 **Dietary factors** CG+GG OR (95% CI) P-value Carb (% of energy) **1.04** (1.01-1.07) 0.019 n-3 PUFAs (g/d) 0.16 (0.05-0.53) 0.003 Total isoflavones (mg/d) 0.65 (0.44-0.95) 0.025 Methionine (mg/d)0.30 (0.13-0.70) 0.005 Total choline (mg/d) 0.29 (0.11-0.73) 0.009


PNPLA3 rs738409 genotypes

- Cross-sectional study, NASH Clinical Research Network
- PNPLA3-rs738409
 variant genotyped in 452 non-Hispanic whites
- Histologically confirmed NAFLD
- FFQ within 6 months of liver biopsy
- Adjusted for calorie intake, age, gender, BMI and type 2 diabetes

Vilar-Gomez E., Am J Gastroenterol 2021


Maternal obesity increases the risk and severity of NAFLD in offspring

- Nationwide cohort study
- Individuals in Sweden with biopsyverified NAFLD ≤25 years of age (n=165)
- Matched on age, sex, and calendar year with up to 5 controls
- Adjusted for: maternal age, maternal country of birth, parity, education, and smoking in early pregnancy

Lifestyle parameters related with increased or reduced risk for HCC, demonstrated in large prospective cohort studies and meta-analyses of cohort studies

- The categories compared were the highest dietary intake category vs. the lowest intake
- AHEI-2010 consists of high intake of fruit, vegetables, whole grains, nuts and legumes, n-3 fats, and low intake of sugar-sweetened beverages and fruit juice, red and processed meat, trans fat, sodium, and a moderate alcohol consumption

Zelber-Sagi S., Seminars in Liver Disease 2021

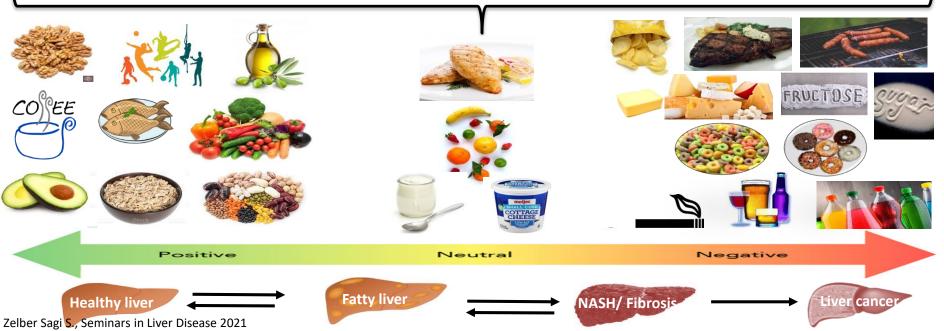
Nutritional anamnesis

Weight reduction

Obese NAFLD

Non-obese NAFLD

Make sure to ask about surged foods, foods rich in saturated fat, ultra- processed foods sugared drinks, fruit juice, alcoholic drinks and physical activity and sedentary time habits


٠

- 5%- 10% reduction of initial body weight, increasing goals with the presence of NASH and fibrosis
 - Healthy diet with caloric restriction tailored for the patients' preferences

- 5% reduction of weight even within the normal BMI range (especially if recent weight gain occurred or if abdominal obesity is present)
- Target reduction of visceral fat (waist circumference)

Lifestyle parameters

(advise both obese and non-obese patients)

Oren Shibolet Zamir Halpern Hanny Yeshua Sigal Fishman Revital Kariv Izabel Zvibel

Muriel Webb Shiri Sherf-Dagan Naomi Fliss Liat Mlynarsky Dana Ivankovsky

